Advanced Drug Delivery System for Improvement in Drug Delivery Technology
Samia Elzwi*
Assistant professor, Department of Pharmacology Benghazi University, Libya.
*Corresponding author: Samia Elzwi, Assistant professor, Department of Pharmacology Benghazi University, Libya.
Citation: Elzwi S. (2022) Advanced Drug Delivery System for Improvement in Drug Delivery Technology. Genesis J Surg Med. 1(2):1-05.
Received: December 01, 2022 | Published: December 15, 2022
Copyright© 2022 genesis pub by Elzwi S, et al. CC BY-NC-ND 4.0 DEED. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License. This allows others distribute, remix, tweak, and build upon the work, even commercially, as long as they credit the authors for the original creation.
Abstract
Drugs delivery systems are designed to maximize drug efficacy and minimize side effects. Improvement in drug delivery technology make drug use safer and more convenient for patients. The physical and chemical differences in the micro-environments of healthy and diseased tissues enable the intelligent design of stimulus-induced drug particles. Intelligent micro and nanoscale systems can maximize therapeutic efficacy in a number of ways. It enables rapid detection and response to disease states at the point of care, preserving physiologically healthy cells and tissues and thereby improving patient well-being. Better quality of life. Drug delivery system like liposome, micelles and polymers are discussed in this review paper.
Keywords
Drug delivery; Liposomes; Micelles Polymer
Introduction
Drug delivery systems are designed to maximize drug efficacy and minimize side effects. Improvements in drug delivery technology make drug use safer and more convenient for patients. The last 70 years have seen incredible advances in drug delivery technology, including. Systems for long-term, localized, and targeted delivery over months to years. However, given the future technologies needed to overcome many physicochemical barriers to the development of new formulations and biological unknowns to treat various diseases, progress is approaching the next stage [1].
For tight TW APIs, drug infusion is an option to meet the time window by adjusting the infusion rate and is most commonly practiced in hospitals. A portable infusion pump is a viable tool for outpatients. A first-generation DD technology (DDT) has been presented to meet his TW for a specific drug by controlling or altering the drug release rate from the DDS over time. DDTs based on this relatively simple concept have brought much success to oral drugs and implantable DDSs because of their convenience and reduced toxicity [5,6].
Liposomes are spherical organic nanoparticle formations composed of a lipid bilayer containing an aqueous core and an impermeable outer lipophilic phospholipid. Aqueous centers are entrapped to encapsulate water-soluble active ingredients for transport, ensuring their arrival at the target area [8]. Aqueous intermediates keep the polar segments of the molecule connected to the polar environment and protect the non-polar segments. The outer shell surrounding the watery core is made of fat called the phospholipid bilayer [9]. A bilayer phospholipid layer helps transport lipid-soluble drugs to the lipid-soluble layer of the cell membrane Conventional liposomes usually contain biogenic phospholipids and lipids such as monosialoganglioside, 1,2-distearolyl-sn-glycero-3-phosphatidylcholine, egg phosphatidylcholine and sphingomyelin. Liposomal formulation is a method for classifying liposomal vesicles of various shapes. Liposomes can be divided into three groups. multilamellar vesicles (MLV), small unilamellar vesicles (SUV), and large unilamellar vesicles [10]. MLVs are composed of numerous lipid layers separated by aqueous solutions. Preparation is voluntary. MLVs are formed by gentle shaking. Small unilamellar vesicles or large unilamellar vesicles vary in size and arise from homogenization of MLVs by a single lipid layer. Liposomes are composed of cholesterol, phospholipids, and active drug molecules [11] The site of drug encapsulation is determined by the drug's optimal environment. By understanding the phospholipid composition of liposomes, we can better understand the location of drugs required for transport. Phospholipids consist of a hydrophobic tail (two fatty acids with 10-20 carbon atoms) and a hydrophilic head (a phosphate attached to a water-soluble molecule). Lipids can range in size from 25 nm to 5000 nm as fine fatty substances. Therapeutic, liposomes can help improve drug potency, stability, controlled release, multipath delivery, and tissue targeting, and reduce unwanted drug toxicity. Liposomes have long been investigated as vesicles that can be engineered to target endogenous barriers that tend to repel foreign substances.
Liposomes have emerged as a viable means of drug delivery to transport drugs that cannot cross the blood-brain barrier. Liposomes are used as components for nanoparticle drug delivery. Because it is biocompatible. It also has the ability to cross the blood-brain barrier and deliver both lipophilic and hydrophilic therapeutics to brain cells. Studies point to the importance of liposome-based drug delivery in the treatment of neurodegenerative diseases. The idea is to encapsulate drugs in appropriately designed liposomes to produce a response to therapy. Several surface modifications of liposomes have also been investigated to create clinical path to the management of Alzheimer’s disease [12].
Advanced Drug Delivery Systems in the Management of Cancer discusses recent developments in nanomedicine and nano-based drug delivery systems used in the treatment of cancers affecting the blood, lungs, brain, and kidneys. Cancer therapy remains one of the greatest challenges in modern medicine, as successful treatment requires the elimination of malignant cells that are closely related to normal cells within the body. Advanced drug delivery systems are carriers for a wide range of pharmacotherapies used in many applications, including cancer treatment. The use of such carrier systems in cancer treatment is growing rapidly as they help overcome the limitations associated with conventional drug delivery systems. Some of the conventional limitations that these advanced drug delivery systems help overcome include nonspecific targeting, systemic toxicity, poor oral bioavailability, reduced efficacy, and low therapeutic index. The need for advanced drug delivery systems in oncology and cancer treatment is established.
Conclusion
Drug delivery systems are designed to maximize drug effect and reduced side effects. Improvements in drug delivery technology make drug use safer and more convenient for patients. Liposome, micelles and polymers each has specific advantage and uses is now increasing worldwide.
References
- Bae YH, Park K. (2020) Advanced drug delivery 2020 and beyond: Perspectives on the future. Adv drug deliv rev.158:4-16.
- Al Ragib A, Chakma R, Dewan K, Islam T, Kormoker T, et al. (2022) Current advanced drug delivery systems: Challenges and potentialities. J Drug Deliv Sci Technol. 27:103727.
- Baillie TA. (2008) Metabolism and toxicity of drugs. Two decades of progress in industrial drug metabolism. Chem Res Toxicol. 21(1):129-37.
- Higuchi T, Hussain A, Alza Corp. (197 8) Drug-delivery device comprising certain polymeric materials for controlled release of drug. United States patent US 4,069,307.
- Pitt CG, Jeffcoat AR, Zweidinger RA, Schindler A. (1979) Sustained drug delivery systems. I. The permeability of poly (ϵ‐caprolactone), poly (DL‐lactic acid), and their copolymers. J Biomed Mater Res. 13(3):497-507.
- Higuchi T, Drug-delivery device, U.S. Patent No 3,625,214 (1971).
- Fukushima S, Miyata K, Nishiyama N, Kanayama N, Yamasaki Y, et al. (2005) PEGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery. J Am Chem Soc. 127(9):2810-1.
- Sokolik VV, Maltsev AV. (2015) Cytokines neuroinflammatory reaction to the action of homoaggregatic and liposomal forms of b-amyloid 1-40 in rats. Biomed Khim. 61(3):373-80.
- Harilal S, Jose J, Parambi DG, Kumar R, Mathew GE, et al. (2019) Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J Pharm Pharmacol. 71(9):1370-83.
- Corace G, Angeloni C, Malaguti M, Hrelia S, Stein PC, et al. (2014) Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. J liposome Res. 24(4):323-35.
- Fonseca-Gomes J, Loureiro JA, Tanqueiro SR, Mouro FM, Ruivo P, et al. (2020) In vivo bio-distribution and toxicity evaluation of polymeric and lipid-based nanoparticles: A potential approach for chronic diseases treatment. Int J Nanomedicine. 8609-21.
- Hernandez C, Shukla S. (2022) Liposome based drug delivery as a potential treatment option for Alzheimer's disease. Neural Regen Research. 17(6):1190.
- O'Reilly RK, Hawker CJ, Wooley KL. (2006) Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev. 35(11):1068-83.
- Jiang W, Kim BY, Rutka JT, Chan WC. (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 3(3):145-50.
- Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 1:149-73.