A Role of SPINK1 in Cancer

Shihori Tanabe*
Senior Researcher, Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Japan

*Corresponding author: Shihori Tanabe, Senior Researcher, Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Japan


Received: April 24, 2023 | Published: May 20, 2023

Copyright© 2023 by Tanabe S. All rights reserved. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract
Serine peptidase inhibitor Kazal type (SPINK) is a family of serine protease inhibitors. SPINK1 is a trypsin inhibitor, which are secreted from pancreatic acinar cells into pancreatic juice, whereas SPINK2 acts as trypsin and acrosin inhibitor in the genital tract and is localized in the spermatozoa. SPINK1 is associated with inflammation and pathogenesis and play an important role in SPINK1 cancer pathway. In this Editorial, the roles of SPINK1 in cancer pathway is focused.

Introduction
SPINK1 as a Prognostic Marker in Cancer
SPINK1 promotes proliferation, clonal formation, migration, invasion, chemoresistance and radiation resistance in cancer [1]. In rectal cancer patients receiving concurrent chemoradiotherapy, SPINK1 expression was a significant prognostic marker for poor prognosis [1]. The result of immunohistochemical staining of SPINK1 showed that immune reactivity of SPINK1 significantly differed by peri-neural invasion [1].SPINK1 was a potential biomarker for the early detection, targeted therapy and prediction of immune checkpoint blockade treatment response of hepatocellular carcinoma [2]. SPINK1 is involved in immunity-related pathways including T-cell activation [2]. Pancreatic cancer estimated risk was 12, 28, and 52% at
60, 70, and 80 years with a SPINK1 gene mutation [3]. Endoscopic ultrasound investigation of pancreatic cystic lesions revealed that the level of SPINK1 in cyst fluid could predict malignancy in cystic pancreatic lesions[4]. SPINK1 pathogenic variant has been identified in pancreatic ductal adenocarcinoma [5]. A gene set including SPINK1 was identified to predict postoperative recurrence in stage II/III colorectal cancer [6]. SPINK1, over expressed in TMPRSS2:ERG-negative prostate cancer, was detected in urine cell-sediment of prostate cancer [7].

Conclusion
SPINK1 plays a role as prognostic and diagnostic markers in various cancer. The precise mechanism of SPINK1 cancer pathway would need to be investigated in the future.

References