Advances in Clinical and Medical Research

Genesis-ACMR-4(1)-48 Volume 4 | Issue 1 Open Access ISSN: 2583-2778

PYGO in Cancer Pathway

Shihori Tanabe*

Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan

*Corresponding author: Shihori Tanabe, Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan

Citation: Tanabe S. (2023) PYGO in Cancer Pathway. Adv Clin Med Res. 4(1):1-3.

Received: January 20, 2023 | Published: February 06, 2023

Copyright[©] 2023 genesis pub by Tanabe S. CC BY-NC-ND 4.0 DEED. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International License.,This allows others distribute, remix, tweak, and build upon the work, even commercially, as long as they credit the authors for the original creation.

Abstract

Several molecules are involved in cancer molecular network. Pygopus family plant homeodomain (PHD) finger (Pygo) is a component of Wnt/ β -catenin transcription complex. Pygo has two homologs, Pygo1 and Pygo2, in mammalian cells. Pygo2 has an important role as a component of β -catenin-B-cell CLL/lymphoma 9 (Bcl9)-TCF/LEF complex. In this Editorial, a role of Pygo in Wnt/ β -catenin signaling related to cancer pathway is summarized.

Introduction

What is PYGO?

Pygopus family plant homology domain (PHD) finger (Pygo) is a dedicated component of the Wnt/βcatenin transcription complex [1]. Pygo is required for MYC, a basic helix-loop-helix leucine zipper protein, -dependent activation of mitosis-related genes and an essential component of MYC oncogenic activity [1]. Pygo has two homologs in mammalian cells, which are Pygo1, dispensable for normal murine development, and Pygo2, related to malignant growth in different cancers [1]. Pygo2 binds specific histone marks of activation such as H3K4me3, which promotes an open euchromatic structure as transcribing genes [1]. Pygo2 participates in the expression of highly transcribed RNAs essential for DNA replication and cell-cycle progression [1].

PYGO in Wnt/ β -catenin signaling

Pygo is necessary for virtually all canonical Wnt signaling-dependent responses [2]. It has been demonstrated that mutations in B-cell CLL/lymphoma 9 (Bcl9) and Pygo genes result in congenital heart defects by tissue-specific perturbation of Wnt/ β -catenin signaling in zebrafish [2]. The interaction between Pygo2 and di- and trimethylated lysine 4 of histone H3 (H3K4me2/3) is essential for mouse development and Wnt signaling-dependent transcription [3]. Pygo2 is more popular than Pygo1 in development, while Pygo1 and Pygo2 are considered to be tissue-specific Wnt pathway components [4]. Pygo2 is recruited by Bcl9 and Bcl9-like (Bcl9I) (Bcl9/9I) and sustains Pax6 expression to ensure a correct lens development in mice, independent of β -catenin [4].

PYGO in therapeutic-resistant cancer

It has been reported that the interactions of Bcl9/Bcl9L with β -catenin and Pygo promote breast cancer growth, invasion, and metastasis [5]. Bcl9/Bcl9L bind to Pygo and to the N-terminal domain of b-catenin *via* the homology domain 1 (HD1) and HD2 domains [5,6]. PYGO2 gene expression was down-regulated in diffuse-type gastric cancer compared to intestinal-type gastric cancer [7]. Diffuse-type gastric cancer demonstrates epithelial-mesenchymal transition-like phenotype which is related to therapeutic resistance in cancer [8]. Some correlations between PYGO2 expression and therapeutic-resistant cancer have been reported. Pygo promotes transcriptional activation of Wnt-target genes *via* β -catenin [6]. It may be possible that PYGO2 in Bcl9-TCF complex contributes to cancer progression in terms of Wnt/ β -catenin pathway.

Conclusion

Pygo2 play a role in cancer pathway especially in correlation of Wnt/ β -catenin pathway. PYGO2 expression seems to be associated with cancer phenotypes, whereas precise mechanism of the Pygo2-promoted therapeutic resistance in cancer is a way of the future.

References

- 1. Andrews PGP, Popadiuk C, Belbin TJ, Kao KR. (2018) Augmentation of Myc-Dependent Mitotic Gene Expression by the Pygopus2 Chromatin Effector. Cell Rep. 23(5):1516-29.
- Cantu C, Felker A, Zimmerli D, Prummel KD, Cabello EM, et al. Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/beta-catenin signaling. Genes Dev. 32(21-22):1443-58.
- 3. Cantu C, Valenta T, Hausmann G, Vilain N, Aguet M, et al. The Pygo2-H3K4me2/3 interaction is dispensable for mouse development and Wnt signaling-dependent transcription. Development. 140(11):2377-86.
- 4. Cantu C, Zimmerli D, Hausmann G, Valenta T, Moor A, et al. (2014) Pax6-dependent, but beta-cateninindependent, function of Bcl9 proteins in mouse lens development. Genes Dev. 28(17):1879-84.
- Vafaizadeh V, Buechel D, Rubinstein N, Kalathur RKR, Bazzani L, et al. (2021) The interactions of Bcl9/Bcl9L with beta-catenin and Pygopus promote breast cancer growth, invasion, and metastasis. Oncogene. 40(43):6195-09.
- Kramps T, Peter O, Brunner E, Nellen D, Froesch B, et al. (2002) Wingless Signaling Requires BCL9/Legless-Mediated Recruitment of Pygopus to the Nuclear β-Catenin-TCF Complex. Cell. 109(7):47-60.
- 7. Tanabe S, Quader S, Ono R, Cabral H, Aoyagi K, et al. (2023) Regulation of Epithelial-Mesenchymal Transition Pathway and Artificial Intelligence-Based Modeling for Pathway Activity Prediction. Onco. 3(1):13-25.
- Tanabe S, Quader S, Ono R, Cabral H, Aoyagi K, et al. (2020) Molecular Network Profiling in Intestinal- and Diffuse-Type Gastric Cancer. Cancers. 12(12):3833.