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Introduction 
We read with great interest the article by Ambati BK, et al. “MSH3 Homology and Potential 

Recombination Link to SARS-CoV-2 Furin Cleavage Site” published on February 21st, 2022 in Frontiers in 

Virology.  This perspective paper highlights a 19-nucleotide genetic sequence, a reverse complement of 

the human MSH3 gene, that contains the SARS-CoV-2 furin cleavage site (FCS). As this sequence (SEQ 

ID11652) was patented by Moderna in 2016 (US patent 9,587,003), some have suggested that the FCS 

may have been known prior to the COVID-19 pandemic [1]. 

 

Aside from its well-established role in averting tumor genesis, novel preclinical studies found that MSH3 

is a key regulator of short tandem repeats (STRs), DNA sequences characteristic of monogenic 

neuropsychiatric disorders, such as Huntington’s disease (HD) and fragile X syndrome (FXS) [2-4]. For 

example, FXS is caused by CGG repeats in the fragile X messenger ribonucleoprotein 1 (FMR1) gene [5]. 

Interestingly, the designers of COVID-19 mRNA vaccine chose to encode the 42 arginine residues (found 

in viral S protein) via a rare CGG codon, increasing the odds of STRs formation [6].  Many viruses, 
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including SARS-CoV-2, human cytomegalovirus (HCV), and human immunodeficiency virus (HIV), were 

demonstrated to generate STRs, increasing the risk of tandem repeat disorders (TRDs) [7-12]. On the 

other hand, fragile X mental retardation protein (FMRP), the product of FMR1 gene, was demonstrated 

to target influenza and Zika viruses, while metabotropic glutamate 5 receptor (mGluR5) inhibitors, 

commonly utilized in FXS, often ameliorate SARS-CoV-2 symptoms, indicating a two-way street between 

viral infections and TRDs [13-15].  

 

Recent studies have reported that STRs can increase the risk of schizophrenia and autism spectrum 

disorder (ASD), indicating that these sequences play a major role not only in monogenic but also in 

polygenic disorders [16,17]. Indeed, the findings of Ambati BK, et al. are in line with our own studies that 

connected FCS to pathological cell-cell fusion, neurodegeneration, and psychopathology [18,19]. As 

COVID-19 mRNA vaccines elicit the expression of full-length S antigen (including the FCS), these 

therapeutics may promote pathological syncytia [20]. Along this line, giant cell myocarditis and arteritis 

due to pathological cell-cell fusion were recorded in Vaccine Adverse Event Reporting System (VAERS) 

[21,22].    

 

Pfizer and Moderna COVID-19 messenger RNA (mRNA) vaccines are heavily engineered to facilitate 

translation and improve stability, modifications that include codon optimization enriched with CG 

repeats [6]. However, as MSH3 regulates STRs, including the CG repetitions, vaccine efficacy is likely 

enhanced by the inhibition or attenuation of this protein. This may explain the reason Moderna was 

interested in patenting this molecule in 2016. In addition, as COVID-19 mRNA therapeutics encode the 

entire S antigen, MSH3may be over expressed, a phenomenon associated with loss of function [23]. 

Indeed, MSH3 may be inactivated via promoter methylation or over expression [24]. 

 

From the neuropsychiatric perspective, the novel MSH3 findings are significant as this protein, encoded 

on chromosome 5 (q11-q13), shares a common promoter with dihydrofolate reductase (DHFR), a gene 

disrupted in many neuropsychiatric conditions, including ASDs, schizophrenia, depressive and bipolar 

disorder as well as immune dysfunction, diabetes, type I, and epilepsy [25-31]. Due to the common 

promoter, vaccine-induced MSH3 inhibition likely attenuates DHFR, predisposing to these pathologies. 

In favor of this statement, we bring the fact that treatment with methotrexate, a DHFR inhibitor, was 

associated with neuropsychiatric pathology, including anxiety, depression, suicidal behavior, and 

dementia [16], [32-36]. 

 

Taken together, the MSH3/DHFR locus may represent a hub where immunity, metabolism, and 

neuropsychiatric pathology intersect, therefore a better understanding of these genes would shed light 

on the etiopathogenesis of these conditions. 

Messenger RNA vaccines, a short overview 

To elicit the generation of neutralizing antibodies, exogenously administered mRNA must be heavily 

engineered to avoid hydrolysis by the extracellular ARN se [37,38]. Placing the nucleic acid backbone 

into lipid nano particles (LNPs), hides it from RNAase, while replacing Uridine with N1-

methylpseudouridine (m1Ψ), renders the vaccine undetectable to sensors [39,40] [Figure 1]. Other 
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adjustments were made in the untranslated regions (UTRs) and polyadenylated (polyA) tail to protect 

and stabilize the vaccine [40,41].  Another alteration, addition of two proline residues, maintains the S 

antigen in prefusion conformation to enhance the exposure to host immune system [42]. Moreover, 

codon optimization includes increased CG content as well as G-quadruplex structures to promote quick 

translation [6]. Furthermore, MSH3 was also found to function as a sensor for G-quadruplexes, therefore 

opposing codon optimization [43,44].  

 

Figure 1: N1-methylpseudouridine (m1Ψ)-modified mRNA (in the rectangle) is surrounded by a lipid nano particle 

(LNP) comprised of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and an ionizable lipid.  

Polyethylene glycol (PEG) is conjugated with the lipid molecules to increase the mRNA duration of action. The 

mRNA encodes for the full-length S antigen and is flanked by two untranslated regions (UTRs) and a poly 

adenylated (poly) tail at the 3' end for stabilization. A cap at the 5’ end offers further protection from exonuclease 

recognition. 

LNPs, a future prospect  

LNP-incorporated mRNA comprises an enormous technological success that goes beyond the vaccines, 

opening new avenues for developing “smart” therapeutics that can be delivered with pinpoint precision 

to specific sub cellular structures [45]. The development of such therapeutics is anticipated to redefine 

clinical pathways, including for non-communicable diseases. However, are these therapies ready for 
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worldwide application in their present molecular form? This question has been asked before, often in 

relation to the potential toxicity of lipid formulations used in the past, especially as part of cancer 

therapeutics delivery [46,47]. 

We anticipate that LNPs will be rapidly adopted into neuropsychiatry, especially as polyethylene glycol 

(PEG), an LNP component, can temporarily increase the permeability of blood-brain barrier (BBB), 

allowing direct nano particle access to neuronal networks [48]. Indeed, we envision a near future when 

micro or nano grams of LNP-attached psychotropic drugs could be delivered to intra neuronal targets, 

averting systemic adverse effects. However, for that to happen, the LNP may need to be redesigned as 

some of the currently utilized lipids may interfere with the psychotropic drugs as we recently 

documented [49]. 
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