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Abstract 
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in late 

2019, the world has faced a major healthcare challenge. There remains limited understanding of the reasons 

for clinical variability of coronavirus disease 2019 (COVID-19), and a lack of biomarkers to identify individuals 

at risk of developing severe lung disease. This article aims to present a hypothesis on a vascular route of 

transfer of SARS-CoV-2 from the oral cavity to the lungs. Saliva is a reservoir of SARS-CoV-2, thus any breach 

in the immune defenses of the mouth may facilitate entrance of the virus to the vasculature through the 

gingival sulcus or periodontal pocket. From the oral vasculature, the virus would pass through veins of the 

neck and chest, and reach the heart, being pumped into pulmonary arteries, and to the small vessels in the 
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Introduction 

Since the first cases of SARS-CoV-2 infection emerged in China, the world has faced a major ongoing 

healthcare challenge. Although there have been advances in treatments and vaccination in populations, 

there remains limited understanding of the reasons for clinical variability of the disease. There is a lack 

of effective biomarkers to identify individuals at risk of developingCOVID-19 lung disease, or those who 

might progress to severe disease leading to intensive care admission, mechanical ventilation, or death 

[1].In this article, we propose a novel understanding of SARS-CoV-2 transmission from the mouth to the 

lungs and the development of COVID-19 lung disease (Figure 1).  

Our hypothesis is based upon: 

• Radiological evidence for primary vascular pathological processes in the lungs; 

• An understanding of the upper respiratory tract as the initial site of infection; 

• The formation of a viral reservoir in the oral cavity (and saliva); 

• Potential for translocation of the virus from saliva to the gingival sulcus/periodontal pocket; 

• Survival of the virus within the sub-gingival plaque biofilm, thus evading the oral mucosal 

immune response; 

• Subsequent direct vascular delivery to the pulmonary vessels; 

• A model of the biological processes associated with viral binding of the ACE2 receptor on the 

endothelium of pulmonary vessels and how subsequent processes correlate with the 

radiological features of a primary pulmonary vasculopathy. 

 

lung periphery. The binding of the virus to the angiotensin-converting enzyme 2 receptor (ACE2), present 

on the endothelial surface of lung vessels, inactivates ACE2 and increases angiotensin-II levels, leading to 

pulmonary vasoconstriction and immunothrombosis (inflammatory-mediated clotting). This leads to 

vascular congestion, proximal vasodilatation, and subsequent lung parenchymal damage mediated by 

endothelial dysfunction. The biological rationale for the oral-vasculo-pulmonary route of infection is 

discussed in detail in this article, including pertinent radiological and oral cavity scientific findings. We 

propose that dental plaque accumulation and periodontal inflammation would further intensify this 

pathway. Therefore, it is suggested that daily oral hygiene and oral healthcare should be prioritized as 

such measures could be potentially lifesaving for COVID-19 patients. If this proposed pathological pathway 

is verified, it would be hugely significant in terms of understanding disease management. Simple low-cost 

measures, such as use of specific mouthwashes, could decrease the salivary viral load, and help prevent or 

mitigate the development of lung disease and severe COVID-19. 

 

Keywords 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); Saliva; Periodontal inflammation; Oral 
healthcare; Mouthwash; Lung disease; Disease management; COVID-19 pneumonia 
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Figure 1: The COVID-19 pathway: A hypothetical model for the oral-vascular-pulmonary route of infection. 

 
If confirmed, this hypothetical model may provide a rationale for understanding why some individuals 

develop COVID-19 lung disease and others do not. It would also fundamentally change the way COVID-

19 is managed, providing a new line of exploration into treatments targeted at the source of the viral 

reservoir, the mouth. 

 

Initial Upper Respiratory Tract Infection and Proposed Mechanism of 

Transmission to the Lungs via Blood Vessels 
Based on knowledge of the intensity of expression of the main SARS-CoV-2 binding receptor – the ACE2 

receptor– the upper airways are considered the initial site of infection for SARS-CoV-2, rather than the 

lower respiratory tract. Expression of the ACE2 receptor is reported to be between 200 to 700 times 

more intense in the nasal airways, specifically on the surface of the olfactory neuroepithelial cells, 

compared to the respiratory epithelial cells of the lower respiratory tract [1,2]. The conclusion from the 

study by Chen and Shen et al. [2] that the initial site of infection is the upper airway, challenges the 

notion that the SARS-CoV-2 virus is necessarily delivered to the lungs via the airways, where expression 

of ACE2 receptors on respiratory epithelial cells is low [3]. 
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The concept that the upper airways may be the predominant initial site of infection for viral 

transmission to the lungs requires further scrutiny. Here we present radiological evidence that raises the 

important possibility of a vascular viral delivery route to the lungs rather than via the respiratory 

airways. The proposed model describes the oral cavity as the reservoir of SARS-CoV-2, specifically in 

saliva, with transmission to the lungs mediated by a breach of the mucosal immune defense barrier of 

the periodontal tissues or oral mucosa, with subsequent intravascular carriage. If proven to be correct, 

this hypothesis would have significant implications for the understanding of how the disease should be 

managed. Simple antimicrobial oral healthcare measures could be implemented not only with the aim of 

reducing the risk of transmission between individuals but also with the aim of providing benefit to 

individuals who are COVID-19 positive. Specifically, these measures could be a means of mitigating the 

risk of developing lung disease, and therefore the most severe form of the disease. 

 

Radiological Perspective– COVID-19 Lung Disease 

1.  Pathological Distribution of Disease 

Pulmonary radiological findings in COVID-19 do not align with a model of SARS-CoV-2infection primarily 

causing disease of the airways of the lungs; the initial and dominant pathological features demonstrated 

radiologically are vascular in nature [4-6]. 

The distribution of lung disease does not favor an inhaled pathogen. No known inhaled infective 

pathogen has preferential tropism for the periphery of the lung bases. Rather, inhaled pathogens would 

be expected to present a uniform distribution to other areas of the lungs, including the mid or upper 

areas, and would not be expected to spare the perihilar or central areas [7,8]. It is important to 

appreciate the anatomy of the pulmonary arteries which dominantly deliver blood to the lung bases, 

bilaterally, symmetrically, peripherally, and posteriorly, matching the dominant distribution of disease in 

COVID-19.It has also been noted that many of the radiological findings typically associated with 

respiratory pneumonia, for example bronchial wall thickening, mucous secretion, and the ‘respiratory 

tree-in-bud’ opacification of small airways, are not features ofCOVID-19 [4,9]. Furthermore, if the airway 

findings typically associated with respiratory pneumonia are present on computed tomography (CT), 

they are considered inconsistent with the diagnosis of COVID-19 [10]. 

2. Evidence of Pulmonary Vascular Phenomena 

Conversely, there are numerous studies within the radiological literature describing the pathogenesis of 

COVID-19 lung disease as driven by vascular phenomena [4-6,9-14]. Early in the pandemic period, the 

presence of “ground-glass opacities” visible on CT was reported to be the hallmark sign of COVID-19 

lung disease [15]. However, these ground-glass opacities were acknowledged as a non-specific feature, 

and histological confirmation of their significance was required, with edema or hemorrhage suggested 

as possible causes [16]. Notably, the radiological literature now reports that these ground-glass opacities 

are accompanied by abnormally dilated blood vessels (Figure 2), which are thought to be responsible for 

the phenomenon of pulmonary arteriovenous vascular shunting and subsequent hypoxemia [4]. 
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Figure 2: CT images of patients with COVID-19 lung disease demonstrating ground-glass opacities (yellow arrows) 

accompanied by abnormally dilated blood vessels (green arrows). 

 

A specific vascular feature known as the ‘vascular tree-in-bud’ sign (not to be confused with ‘respiratory 

tree-in-bud’ found in conventional respiratory pneumonia) is visible on CT as a distinct entity in 64% of 

patients with COVID-19 lung disease [11]. This sign is thought to be a marker of the pathological process 

of immunothrombosis and can be visible without lung parenchymal changes in the form of ground-glass 

opacities.The presence of this sign correlates with the length of hospital stay [12]. 

Further evidence of vascular disease comes from studies of Dual-Energy CT which describe perfusion 

defects in 100% of patients with COVID-19. These defects of blood flow are categorized by two distinct 

patterns: a wedge-shaped pattern – analogous to pulmonary embolism; and a mottled/amorphous 

pattern – analogous to chronic or idiopathic thromboembolic hypertension. Dilated blood vessels and 

hyperperfusion are also described proximal to areas of ground-glass opacification [13]. 

 

3. Distinct Phenotype of Thromboembolic Disease 

There has been much interest regarding the high incidence of pulmonary thromboembolic disease in 

COVID-19 patients. When compared to conventional pulmonary thromboembolic disease, a different 

distribution is described in patients with COVID-19. In COVID-19, the filling defects visible within 
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pulmonary arteries with CT pulmonary angiography (CTPA) are lower in volume and more peripheral. 

This difference is thought to be related to the pathological process of immunothrombosis [14].Indeed, 

immunothrombosis is the main driver of disease in the lungs [15-17], and can even be considered as an 

appropriate immune response, serving to trap pathogens in the affected area of tissue, thus preventing 

escape into the systemic circulation [18]. This difference in the distribution of thromboembolic disease, 

with smaller and more peripheral filling defects visible on CTPA, is significant because it is known that 

smaller and more peripheral clots are more likely to result in pulmonary vascular occlusion when 

compared to larger central filling defects [19]. Many peripherally-located areas of ground-glass 

opacification are morphologically identical to pulmonary wedge-shaped infarcts (Figure 3). These are 

visible regardless of the presence or absence of visible filling defects in adjacent pulmonary arteries [20]. 

 

 
Figure 3: CTPA scans of the lungs in patients with COVID-19 lung disease. Wedge-shaped areas of ground-glass 

opacification located at the edges of the lungs resemble pulmonary infarcts. These can be present with or without 

visible filling defects in the pulmonary arteries on CTPA examination. 

 

4. Correlation of Radiological and Autopsy Findings 

It is also important to note that both macroscopic and microscopic pulmonary vascular obstruction is 

found on autopsy and that pulmonary infarcts are indeed present in the majority of individuals dying 

with COVID-19 lung disease [21]. Viral elements have been detected in endothelial cells in autopsy 

studies of those who have died with COVID-19, with evidence of endothelial cell inflammation and 

inflammatory cell death [22,23]. Histologically, microangiopathy of lung vessels is described with 

microthrombivisible within both pulmonary arterioles and peripheral lung venules. Thus, there is 
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thrombosis on both sides of the capillary bed of the pulmonary vasculature, proximal and distal to the 

alveolar capillaries [24]. It is important to appreciate that this means that CTPA, the conventional 

imaging modality used to look for pulmonary thromboembolic disease, will underestimate the presence 

of thrombosis because some of the thrombosis is on the venous side which is not enhanced with 

intravenous contrast. This may be helpful in understanding the pathogenesis of some of the peripheral 

vasculitis mimics seen specifically in patients with COVID-19 lung disease which are thought to be 

mediated by microemboli arising from the venous side of the pulmonary vasculature(blood vessels 

returning to the heart)and disseminated systemically [25].  

In summary, the radiological findings are not consistent with dominant or primary airways disease but 

rather are entirely consistent with a disease of the lung blood vessels occurring first. This vascular 

disease is mediated by the process of immunothrombosis which below is proposed to result from 

interaction with the pulmonary endothelial ACE2 receptor. The consequences of this interaction and 

subsequent effects of deregulated increase of angiotensin-II and vascular congestion could explain the 

other radiological features of proximal vascular dilatation and the vascular tree-in-bud sign. The 

development of ground-glass opacities could result from endothelial dysfunction [4]. Indeed, endothelial 

dysfunction is widely reported as a dominant pathological feature [26,27]. 

 

Periodontal Perspective – COVID-19 in the Oral Cavity 

1. Entry factors for SARS-CoV-2 in oral and gingival tissues 

The invasion of host cells by SARS-CoV-2 is mediated by ACE2 receptors, furin, and trans membrane 

protease serine 2 (TMPRSS2). Viral spike proteins bind to ACE2 receptors on the surface of host cells, 

and TMPRSS2 mediates endocytosis. Furin is involved in the release of new viral particles to the 

extracellular compartment [28]. These mediators, which are key elements for infection, are expressed 

abundantly in the nasal airways and oral cavity, including gingival tissues, minor salivary glands, and 

tongue [29,30]. Although not all oral tissues express the three mediators of viral entry, cells of the 

sulcular epithelium do express ACE2, TMPRSS2, and furin. This indicates the potential for the gingival 

sulcus to be a target for SARS-CoV-2 infection. Thus, several niches in the oral cavity can become 

infected by the virus, including the gingival sulcus [30,31]. 

2. Presence of SARS-CoV-2 in the oral cavity and periodontal tissues 

There is strong evidence from several studies confirming the presence of SARS-CoV-2 in saliva, minor 

salivary glands, tongue, and gingival crevicular fluid [32]. A recent study on autopsy tissues from 

deceased COVID-19 patients reported viral infection of the oral mucosa and salivary glands [29]. 

Another post-mortem study confirmed the presence of viral RNA in the periodontal tissues of 5 out of 7 

patients who died of COVID-19 [33]. Together, these findings suggest that SARS-CoV-2 is abundant in 

saliva and may infect salivary gland tissue, gingival and oral mucosal cells. 

A study from Huang et al.[34] suggests that the virus can persist in saliva or in the nasopharynx for over 

two months. In asymptomatic individuals, viral clearance was observed after 0.5 to 3.5 weeks [34]. The 

salivary viral load has been linked to loss of taste, overall disease severity and mortality, being a better 

predictor of poor outcome than patient age or viral load in the nasopharynx [34,35]. This is a particularly 
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important finding given that patient age is considered the most significant risk factor. [36]. Although it 

could be speculated that the viral load in saliva is merely a marker for generalized high viral load, this 

does not explain why the viral load in the nasopharynx is not a predictor of poor outcome. In the study 

from Huang et al. [34] most asymptomatic individuals displayed only nasopharyngeal swab positivity. 

Saliva viral load seems to be a specific predictor of poor outcome[35]. 

 

3. Periodontal pockets as a reservoir for viruses 

Previous studies have reported the presence of human viruses in saliva, gingival crevicular fluid (GCF), 

subgingival plaque, and gingival tissues, including human immunodeficiency virus, herpesviruses, 

Epstein-Barr virus, cytomegalovirus, and Zika virus [37-41]. In a recent SARS-CoV-2 study, viral RNA was 

detected in the GCF of 64% of COVID-19 positive patients [32]. It has been speculated that viral particles 

in the oral cavity can migrate into the gingival sulcus/periodontal pockets, where the conditions are 

favorable for their survival. Sub-gingival plaque biofilm can provide a unique environment for viruses, 

and in periodontitis patients, the periodontal pocket epithelium develops micro-ulcerations that 

facilitate the passage of microorganisms and viral particles to the underlying connective tissue and 

gingival capillary complex, reaching the systemic circulation [31,33]. The area of exposed connective 

tissue and associated blood vessels that are in direct contact with the sub-gingival biofilm ranges from 5 

cm2 in mild disease to more than 20 cm2 in severe periodontitis [42]. Indeed, peripheral blood 

neutrophils in periodontitis patients have been shown to exhibit a type-1 interferon gene expression 

signature, consistent with intravascular exposure to periodontal microorganisms such as viruses [43]. 

Thus, periodontal pockets possibly present suitable conditions for viral replication, infection, and spread 

to gingival capillaries. 

Studies have shown that poor oral hygiene and periodontitis increase the risk for development of severe 

COVID-19 with poor outcomes [31,33,34,45]. Specifically, the recent study by Marouf et al. [46] 

examined dental X-rays of a large population sample (568 patients) with COVID-19. The study found an 

increased risk of developing severe COVID-19 (defined as intensive care admission, need for mechanical 

ventilation, or death) in those with periodontitis, with an overall odds ratio of 3.67 after confounders 

were accounted for, including age, sex, smoking, BMI, diabetes and comorbidities [46]. 

 

4. Oral and nasal cavities as entry points for microorganisms 

In periodontitis patients, the risk for viral invasion is likely to increase due to potential disruption of the 

pocket epithelium resulting from local inflammation, which is the same principle that potentially 

explains bacterial entrance to the systemic circulation [47]. Even in healthy patients, the permeable 

nature of the junctional epithelium can facilitate viremia[48]. 

 

The presence of oral bacteria in the systemic circulation has been reported previously in studies on 

bacteriemia and infective endocarditis of oral origin. These studies propose that oral bacteria can cause 

damage elsewhere in the body, with the risk being higher with poor oral hygiene and periodontal 

inflammation [49]. As bacteria can pass into the systemic circulation via breakdown of the immune 

defenses of the mouth, then the same route could be open to viruses, including SARS-CoV-2, and 

facilitated by periodontal disease. Other potential sources of transmucosal transfer include the floor of 

https://doi.org/10.52793/JOMDR.2020.2(1)-13


9 

 

Research Article | Lloyd-Jones G, et al. J Oral Med and Dent Res. 2021, 2(1)-13. 

DOI: https://doi.org/10.52793/JOMDR.2020.2(1)-13  

the mouth (including salivary ducts) and Kiesselbach's plexus (Little’s area) of the nose, however 

research evidence is currently lacking and nasal symptoms such as anosmia are associated with a lower 

severity of coronavirus disease [50]. We propose that transfer across the gingival crevice is more likely 

to be the most significant pathway, rather than a secondary route. 

 

5. The potential role for viral-bacterial synergy in the periodontal environment 

A higher prevalence of cytomegalovirus, Epstein-Barr virus, and other herpesviruses has been reported 

in the subgingival plaque biofilm from periodontitis patients when compared to patients with gingivitis 

or a healthy periodontium[51,52]. The presence of herpesviruses in periodontal pockets seems to 

increase the risk for tissue destruction, suggesting a synergistic action between viruses and periodontal 

pathogens [53]. Several Gram-negative anaerobic bacteria implicated in periodontal disease have been 

associated with Epstein-Barr virus and cytomegalovirus, particularly Porphyromonasgingivalisand 

Tannerella forsythia [52]. Thus, the co-presence of SARS-CoV-2 with periodontal bacteria may 

exacerbate periodontal tissue damage, but the nature, extent, and consequences of this interaction are 

currently unknown. In periodontitis patients, it can be speculated that i) a viral-bacterial synergy might 

facilitate penetration of SARS-CoV-2 through the pocket epithelium, ii) such an interaction can help 

viruses evade the immune response, thus enabling its entrance to gingival capillaries and endovascular 

transmission directly to the pulmonary vessels. Co-infection in COVID-19 is also a possibility, given that 

serious respiratory conditions are often associated with viral bacterial co-infections [54]. However, there 

is a scarcity of data on SARS-CoV-2 bacterial co-infection [24]. Significantly, autopsy studies show a 

surprising lack of bacterial super-infection in those who have died from COVID-19 [24]. Also, a report 

relating to critical care patients did not find evidence of bacterial co-infection in blood, sputum, or 

bronchoscopic sampling upon admission to intensive care [55]. 

It is also possible that periodontal inflammation can increase the risk for viral infection. A study on 

Epstein-Barr virus found that gingival epithelial cells were frequently infected, and the level of viral 

infection correlated with the level of periodontal inflammation [56]. Previous studies report that P. 

gingivalis can facilitate the reactivation of latent Epstein-Barr and HIV-1 viruses [57,58]. Hence, a 

synergistic relationship between SARS-CoV-2 and periodontal bacteria cannot be excluded. 

In immunocompromised mice, cytomegalovirus and P. gingivalisco-infection resulted in the highest 

mortality when compared to inoculation with the virus alone, P. gingivalisalone, or the combination of 

the virus and Escherichia coli.Based on the observed lower systemic levels of gamma interferon and 

lymphoid depletion observed in P. gingivalis and cytomegalovirus infection, it was suggested that this 

periodontal bacteria can increase the viral impact on the host [59]. 

 

6. Potential role of local and systemic inflammatory response  

In periodontitis, the host response to microorganisms in the subgingival biofilm is mediated by the 

expression of pro-inflammatory cytokines, particularly tumor necrosis factor α (TNF-α), interleukin-1β 

(IL-1β), and interleukin-6 (IL-6). These soluble proteins can change cellular functions to promote and 

perpetuate inflammation and tissue destruction in the periodontal tissues and elsewhere in the body 

[60,61]. The link between periodontitis and systemic diseases has been researched extensively in the 
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last decade, and findings from multiple studies point to the significance of elevated levels of pro-

inflammatory cytokines and acute-phase proteins [62-65]. Indeed, studies have demonstrated that 

peripheral blood neutrophils of periodontitis patients are hyper-reactive with respect to cytokine 

release (IL-1β, IL-8, IL-6, TNF-α) when FcγR and Toll-like R4 receptors are challenged, relative to non-

periodontitis controls [66]. Periodontal treatment has been shown to positively affect systemic 

inflammation in healthy patients and in those who have chronic diseases, such as type-2 diabetes [67], 

hypertension [68], coronary heart disease, and atherosclerosis [69-74]. 

 

Severity of COVID-19 has also been linked to systemic inflammation [75,76]. In COVID-19 patients, the 

risk for respiratory failure was 22 times higher in patients who presented high IL-6 levels upon hospital 

admission [77]. 

 

Although occult sources of infection in the body that perpetuate inflammation, such as periodontitis, 

contribute to the systemic inflammatory burden, there is limited evidence of overspill of locally 

produced inflammatory mediators in the periodontium into the systemic circulation, and no evidence 

for such disseminating inflammation triggering the lung disease. A direct role for the periodontal 

inflammatory response seems unlikely, especially in view of the potential for direct endothelial viral-

ACE2 interaction as described below. 

 

7. Links between periodontitis and oral hygiene with other respiratory conditions 

Evidence suggests that periodontitis can increase the risk for respiratory diseases such as pneumonia, 

and chronic obstructive pulmonary disease (COPD) [78-80]. Studies also report on decreased lung 

volume, airflow limitation, and worse pulmonary function in systemically healthy patients with 

periodontitis [81,82], and patients with both periodontitis and COPD [83], as well as successful 

periodontal treatment resulting in reduced exacerbations of COPD [84]. COPD has been suggested to be 

low in prevalence in COVID-19 cases but conversely, if present, is described as a risk factor for poor 

outcome in COVID-19 [85,86]. 

In hospital settings, adequate plaque control measures and dental treatment have been shown to 

reduce the incidence and severity of pulmonary infection [87,88]. Aspiration and hematogenous spread 

of oral microorganisms have been described as potential pathways for the connection between oral and 

pulmonary conditions [89]. But findings from astudy of the CT chest features in COVID-19 showed that 

the presence of airway secretions is not typical in these patients [10], which further supports the notion 

of a potential hematogenous route of transmission from the oral cavity to the lungs. It is also important 

to consider the lack of bacterial super-infection found histologically, as reported above [24,55]. 

 

There is evidence that oral hygiene measures lower the incidence of aspiration pneumonia in elderly 

patients in hospital and nursing homes, decreasing morbidity and mortality [90]. In the systematic 

review from Sjogren et al. [91] the authors estimate that one in ten cases of death from pneumonia in 

nursing home patients can be prevented through simple oral hygiene measures [91]. Given that 

periodontitis and inadequate oral hygiene negatively impacts respiratory conditions and lung function, 

particularly in hospitalized patients, their potential to worsen lung complications in hospitalized COVID-
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19 patients should not be ignored. This also perhaps acts as an existing rationale for treating any patient 

with symptomatic COVID-19 by implementing oral hygiene measures. 

 

8. Shared risk factors between COVID-19 and periodontitis 

Periodontitis and poor outcome in COVID-19 share many risk factors, such as patient age [92,93], male 

sex [94,95], diabetes [96,97], cardiovascular disease [98,99], obesity [93,100], COPD [101,102], Down 

syndrome [103,104], specific ethnic groups [105,106], type A blood group [107,108], chronic kidney 

disease [109-111], physical disability or learning difficulty [112,113] and dementia [114,115]. 

 

Smoking is a recognized risk factor for periodontitis [116]. In a recent meta-analysis, smoking was 

associated with increased risk for severe COVID-19 [117] but not all studies confirm this association 

[118]. It is notable that if COVID-19 lung disease was mediated by airways pathology, smoking would be 

considered a risk factor for poor outcome, as it is in influenza [119]. Rather, there is counterintuitive 

evidence about the role of smoking and the suggestion that nicotine may have a therapeutic role [120-

122]. The harmful effects of smoking on gingival tissues are mediated, in part, by the vasoconstrictive 

biological action of nicotine [123], which leads to significantly reduced gingival bleeding and decreased 

diameter of gingival capillaries [124,125], Conceivably, the local vasoconstriction action of nicotine may 

limit the transfer of microorganisms across the mucosal membrane of the oral cavity and periodontal 

tissues to the venous drainage of the mouth. 

 

A large population study showed increased COVID-19 symptoms in individuals who smoke [126]. 

Therefore, smoking may be considered yet another risk factor shared between COVID-19 and 

periodontitis, however the exact mechanism of interaction of smoke inhalation and nicotine action is 

complex and likely involves multiple toxins present within cigarette smoke vapor and tar fractions. 

 

9. Higher severity of COVID-19 in patients with poor oral hygiene/periodontal disease 

As mentioned previously, the case-control study on 568 COVID-19 patients showed an association 

between periodontitis and COVID-19 severity [46]. This study found that periodontitis was associated 

with complications for COVID-19 including death (odds ratio 8.81), intensive care admission (odds ratio 

3.54), and need for assisted ventilation (odds ratio 4.57) [46]. Dental plaque could provide a constant 

source of viral delivery to the vasculature during the acute phase of COVID-19. Thus, it is biologically 

plausible that the ongoing delivery of the virus itself to the lung vessels could account for poorer 

outcomes, rather than viral transmission via the airways or bacterial super-infection.  

 

Biological Rationale for the Oral-Vascular-Pulmonary Route of Infection 
Here we propose a model of direct viral delivery from the oral cavity via the venous drainage of the 

mouth, neck (jugular veins), and chest (superior vena cava), through the right side of the heart, and then 

to the pulmonary vessels. Such a route of transmission would be compounded by poor oral hygiene or 

periodontal disease. This model of disease could be hugely significant in terms of a novel understanding 

of the disease pathogenesis and its management. 
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Below is presented the biological plausibility for this oral-vascular-pulmonary route ofSARS-CoV-2 

transmission from the oral cavity to the lungs facilitating the development of COVID-19 lung disease. As 

discussed above, periodontitis and poor oral health are associated with each of the following: age, male 

sex, diabetes, cardiovascular disease, obesity, specific ethnic groups, disability, and type A blood group, 

all of which are risk factors for severe COVID-19. Thus, periodontitis and poor oral hygiene are here 

proposed as the converging and principal risk factor for severe COVID-19. It is proposed that the oral-

vascular-pulmonary anatomical route of transmission could explain why some patients develop lung 

disease, and so are susceptible to severe disease, and others do not. 

 

Anatomical Route – from the Oral Cavity to the Lungs 
With high levels of SARS-CoV-2 in saliva, any breakdown of the primary immune barrier in the oral cavity 

could facilitate viral entry to capillaries. Poor oral hygiene could further increase the risk of infection by 

changing the physiologically permeable junctional and sulcular epithelium to a pocket lining epithelium, 

which then ulcerates creating a co-called “periodontal wound”. The size of the periodontal wound, and 

therefore the associated vascular access to plaque microorganisms, can be calculated and increases as 

oral hygiene worsens. Through the venous drainage of the mouth and neck, the virus would reach the 

superior vena cava, entering the right side of the heart, and then be pumped into the pulmonary 

arteries. This route of hematogenous delivery of SARS-CoV-2 to the lungs, rather than via the lower 

airways, would explain the vascular distribution of the lung disease in COVID-19 seen radiologically. 

 

If other microorganisms can enter the systemic circulation via a breach of the mucosal defense barrier of 

the mouth, it should be asked why they do not evidently cause lung disease. The specific pulmonary 

vascular tropism of SARS-CoV-2 requires an explanation. 

 

ACE2 Receptor-Virus Interaction 

SARS-CoV-2 is known to bind to ACE2 receptors. These receptors are said to be expressed in respiratory 

epithelial cells of the airways which has been used to explain the conventional model of viral interaction 

with the lungs [127]. Although this is one way the virus could enter, the expression of ACE2 on 

respiratory epithelial cells has been shown to be at much lower levels when compared to nasal 

neuroepithelial cells [2,3], and some have suggested very low levels or even no expression in the normal 

respiratory system [128]. 

 

Importantly, expression of ACE2 receptors has also been reported in endothelial cells of pulmonary 

vessels and several other organs of the body [26,129,130]. This provides a specific model for the 

interaction of SARS-CoV-2 with the endothelium of pulmonary vessels, unlike other viruses, which are 

not known to bind to the ACE2 receptor. In view of the lack of airways disease visible radiologically, it 

also helps explain the question of why the pulmonary vessels are dominantly affected compared to 

other organs [131]. According to the model of the oral-vascular-pulmonary anatomical route of 

transmission from the mouth to the lungs, the virus would be delivered to the pulmonary vessels first, 

before it could reach other organs. 
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Additionally, as presented above, the radiologically observed dilated vessels and the specific vascular 

tree-in-bud sign, which can be visible independent of ground-glass opacification or consolidation, are 

consistent with a model of viral-ACE2 interaction and development of immunothrombosis and its 

consequences. 

 

Simply put, if the virus could pass from saliva or the sub-gingival periodontal environment into the 

venous drainage of the mouth, it would first be delivered directly to the small vessels of the lung 

periphery. This is exactly where immunothrombosis occurs, being accepted as the main driver of the 

pathology [12,14,17,132]. 

 

On interacting with ACE2 receptors on pulmonary vascular endothelial surfaces, viral binding would lead 

to an unregulated increase in local levels of angiotensin-II hormone, which has multiple biological 

functions, including vasoconstriction, promotion of inflammation, and thrombosis [133]. These direct 

actions of angiotensin-II have been proposed as a contributor to the development of 

immunothrombosis in COVID-19 lung disease [134]. In this way, unregulated levels of angiotensin-II 

could be the trigger for immunothrombosis and act as a key pathological step in the development of 

lung disease and the systemic hypercoagulable state. 

 

In COVID-19 autopsy studies, viral particles were detected in endothelial cells of the lungs, with 

evidence of endothelial cell inflammation and inflammatory cell death [22,23,26]. The process of 

immunothrombosis could be considered locally harmful because it prevents blood flow and, thus, 

prevents gas exchange. However, it is suggested that the process of immunothrombosis serves to 

contain and eliminate pathogens [18], which perhaps helps to explain the lack of viremia in the early 

stages of COVID-19 [135]. It can be postulated that the viremia seen later in the disease process, which 

is a predictor of deathcould arise when the mechanism of immunothrombosis is saturated and the lungs 

can no longer trap the virus [136]. 

 

Clinical Significance 
From the oral cavity, if SARS-CoV-2 can reach the lungs through the blood, causing immunothrombosis-

driven disease in the pulmonary vessels, then early measures to decrease transmission to the lungs in 

this way must be considered in the management of COVID-19. This concept could influence the 

development of new approaches with the aim of preventing or mitigating lung disease. 

 

This concept potentially highlights the importance of active oral healthcare and adequate daily oral 

hygiene measures in the management of COVID-19 [44]. Importantly, it is noted that readily available 

mouthwashes containing cetylpyridinium chloride (CPC) or ethyl lauroylarginate (ELA) can inactivate 

SARS-CoV-2 with high efficacy in vitro [137-140]. Those containing povidone-iodine (PVP-I) have also 

been shown to be effective [139,141-47]. Mouthwash products containing chlorhexidine or ethanol 

alone displayed little or no ability to inactivate SARS-CoV-2 [138]. Given that mouthwash products 

containing these specific ingredients are readily available across the world, they could provide a cheap 

and effective treatment in those with COVID-19 with the additional potential benefit of reducing the risk 
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of transmission to others. These products should only be used as directed by the manufacturer, or as 

advised by oral healthcare professionals as part of a population study or clinical trial. These specific 

mouthwash ingredients may potentially play a role in mitigating development or worsening of the lung 

disease at any stage, from those who are swab positive and asymptomatic in the community to those 

who are hospitalized or even in intensive care. 

 

Media outlets have reported the adoption of mouthwashes in some countries, as advised by 

government officials, either officially or perhaps unofficially. In Japan, for example, the sales of 

mouthwash increased substantially after a governor advised the population to use a gargling solution 

[148]. COVID-19 outcomes in Japan are significantly better than in other G20 countries, such as the UK 

and the US (as of February 19th, 2021– data from the previous seven day period– 3.41 deaths per 

million (Japan), 33.28 deaths per million (USA), and 46.28 deaths per million in the (UK) [149]. Although 

there are likely to be many confounding reasons for the lower mortality in Japan, this difference of 

approach is raised as a point of interest to be urgently researched by governmental and public health 

officials. 

 

Recommendations for Good General Oral Healthcare 
Adequate daily home oral care habits are essential for oral and general health, as it decreases the risk 

for dental caries, gingivitis, and periodontitis. If proven to be correct, the concept of the oral-vascular-

pulmonary infection route may mean that these simple measures could reduce the risk of developing 

severe COVID-19 lung disease. 

 

Although each patient has unique needs, the European Federation of Periodontology (EFP) provides 

general recommendations [150]: 

- There is a universal recommendation to brush twice daily for at least 2 minutes with a 

fluoridated toothpaste. 

- For periodontitis patients 2 minutes is likely to be insufficient. 

- Manual or power toothbrushing is recommended as a primary means of reducing plaque and 

gingivitis. The benefits of toothbrushing outweigh any potential risks. 

- Daily inter-dental cleaning is strongly recommended to reduce plaque and gingival 

inflammation. When gingival inflammation is present, inter-dental cleaning, preferably with 

interdental brushes should be professionally taught to patients. 

- For the treatment of gingivitis and where improvements in plaque control are required, 

adjunctive use of antiplaque chemical agents may be considered. In this scenario, mouthwashes 

may offer greater efficacy but require an additional action to the mechanical oral hygiene 

regime. 

Mouthwash products have shown potential to decrease the viral load in the oral cavity [151]. In the S3-

level evidence-based treatment guidelines provided by the European Federation of Periodontology (EFP) 

in 2020, the use of mouthwash products is recommended as adjunctive agents in the treatment of 

stages I-III periodontitis [152]. 
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Considerations for Oral Healthcare in View of this Hypothesis 
Despite the scarcity of clinical evidence for in vivo viral inactivation, well-established mouthwashes 

containing specific ingredients, which inactivate SARS-CoV-2 in vitro, could potentially help mitigate 

transmission and decrease the risk of severe lung disease in COVID-19 [138,139].These ingredients 

include: 

• 0.05%-0.1% Cetylpyridinium Chloride (CPC): 15 ml for 30 seconds twice a day. In vitro and in 

vivo studies indicate that mouthwash products containing CPC are able to inactivate SARS-CoV-

2 [137-140]. These products are generally considered to be safe, with staining of the tongue 

and teeth being rarely reported [153]. 

• 0.147% Ethyl lauroylarginate (ELA): 20 ml for 30 seconds twice a day. In vitro results suggest 

virucidal activity of ELA against SARS-CoV-2 [138]. 

• 0.2%, 0.4% or 0.5% Povidone-Iodine (PVP-I): 10 ml for 30 seconds twice a day. The use of PVP-I 

is supported by in vitro [141-43] and in vivo studies [139,144-46]. In one clinical trial, the use of 

1% PVP-I mouth rinse resulted in temporary thyroid dysfunction in 42% of COVID-19 patients, 

suggesting that lower concentrations should be preferred [144]. Contraindications: allergy, 

hyperthyroidism, thyroid dysfunction, pregnancy, lactation, and treatment with radioactive 

iodine [154,155]. 

The use of mouthwashes should not replace other daily oral hygiene measures. They should be used 

after toothbrushing for limited periods due to potential side effects. Mouthwashes should never be 

swallowed. In the context of the pandemic, it would seem logical to use mouthwash products both 

before and after social interactions, but clinical trials are required to answer the critical question of the 

potential effect of these products as a means of reducing the risk of transmission between individuals. 

Clinical trials are also required to specifically address the potential for mouthwashes to mitigate the 

development of COVID-19lung disease, and hence the severest form of the disease. 

 

Conclusion 
The nasal and oral cavities are entry points into the body for microbial pathogens. The oral cavity 

provides favorable conditions for viral replication, with saliva functioning as a reservoir for SARS-CoV-2. 

Cells in different oral niches express receptors that make them potential targets for viral infection. The 

gingival sulcus in healthy patients can allow the entrance of viral particles into gingival capillaries due to 

the permeability of the sulcular epithelium. In periodontitis, the entrance of the virus into the circulation 

could be facilitated by micro-ulcerations in the pocket epithelium. Poor oral hygiene and dental plaque 

accumulation may further intensify this pathway. From gingival capillaries, the virus could reach the 

lungs via a vascular route, where it would trigger the known main pathological driver of disease, that of 

immunothrombosis. This proposed mechanism of transmission of the virus from the oral cavity to the 

lungs may explain both the radiological appearances and the clinical variability of the disease. Although 

to an extent the passage of the virus across the mucous membranes of the nasal passage and mouth 

may occur in healthy individuals, the presence of poor oral health could act as a risk factor to identify 

individuals more likely to develop COVID-19 lung disease, or those who might progress to severe disease 

leading to intensive care admission, mechanical ventilation, or death. The co-morbid presence of 
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periodontitis has been shown to represent an independent risk factor for other systemic inflammatory 

diseases that are characterized by hyper-inflammation and oxidative stress [67,103,105]. 

 

Given that–i) saliva is a reservoir of the SARS-CoV-2 virus; ii) high salivary viral load is a better predictor 

of poor outcome than patient age; iii) the virus initially interacts with the upper respiratory airways; iv) 

the lower respiratory tract is not dominantly involved radiologically until the airways are compromised 

secondary to the vascular disease; v) the pulmonary vessels are dominantly affected radiologically; and 

vi) the radiological manifestations align with the model of viral binding with pulmonary vessel 

endothelial ACE2 receptors and subsequent processes –it seems compelling that a breach in the 

mucosal defenses of the mouth could facilitate transmission of SARS-CoV-2 to the lungs via a 

hematogenous route. 

 

Studies are urgently required to confirm or refute this hypothesis. Determining viral load within blood 

samples taken simultaneously from the jugular vein and a peripheral site is suggested here as a possible 

means of corroborating the role of the proposed anatomical pathway. This method, by which the virus 

might be caught ‘red-handed’ as it passes down the jugular veins, has recently been offered with 

interest to laboratories and research teams in the UK, but is also offered here as an open proposal to 

researchers worldwide. It is not known if viable infectious virus could be transported by this route. This 

will need to be examined in future studies using a combination of electron microscopy to identify 

whether virus particles are being carried within or on particular cell types, for example macrophages, 

and functional assays to determine whether infectious virus can be rescued from these blood cells. If a 

differential viral load between samples taken simultaneously from a jugular vein and a peripheral site 

was established, then further corroboration of the theory could be gained by matching jugular viral load 

with salivary viral load, the severity of periodontitis, and post challenge following use of specific 

mouthwashes or other oral hygiene measures. 

 

Until proven or refuted, daily oral hygiene and other measures for plaque control, together with oral 

healthcare should be prioritized for the general public, since these measures not only improve oral 

health and wellbeing but could also be potentially lifesaving in the context of the pandemic. There is 

already a precedent for employing simple oral hygiene measures to improve outcomes in patients with 

pneumonia, and it seems unlikely that oral hygiene measures will cause harm, as long as the 

manufacturer’s instructions are followed carefully. 

 

In consideration of people in areas of the world where specific mouthwashes may not be available or 

affordable, there may be even simpler measures to consider. A recent study reported that saltwater 

rinsing can reduce gingival inflammation [156], and even mouth rinsing with boiled water (which has 

been allowed to cool) has shown positive effects on plaque and oral mucosa in hospitalized elderly 

patients [157]. This suggests that simple measures can help decrease the salivary viral load in areas of 

the world where mouthwash products are not readily available. It is sincerely hoped that, if proven 

correct, this concept provides a rationale for the use of oral healthcare measures which are cheap (or 

even free) and are available worldwide, and that these measures may help prevent the development of 

lung disease, mitigate deterioration to severe COVID-19, and reduce mortality. 
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